Oxytocin and NRF2: free and frugal pathways to healthy ageing
PDF

Keywords

Oxytocin
Ageing

Abstract

 

 

 

https://doi.org/10.48037/mbmj.v9i2.1368
PDF

References

Benameur T, Panaro M, Porro C. The antiaging role of oxytocin. Neural Regeneration Research 2021;16(12):2413. Available from: https://doi.org/10.4103/1673-5374.313030

Horn AJ, Carter CS. Love and longevity: a social dependency hypothesis. Comp Psychoneuroendocrinol 2021;8:100088. Available from: https://doi.org/10.1016/j.cpnec.2021.100088

Moosmann B, Behl C. Secretory peptide hormones are biochemical antioxidants: structure-activity relationship. Mol Pharmacol 2002;61(2):260–268. Available from: https://doi.org/10.1124/mol.61.2.260

Roy JF, Chrétien MN, Woodside B, English AM. Reduction and S-nitrosation of the neuropeptide oxytocin: implications for its biological function. Nitric Oxide. 2007;17(2):82-90. Available from: https://doi.org/10.1016/j.niox.2007.06.005

Clodi M, Vila G, Geyeregger R, et al. Oxytocin alleviates the neuroendocrine and cytokine response to bacterial endotoxin in healthy men. Am J Physiol Endocrinol Metab. 2008;295(3):E686-91. Available from: https://doi.org/10.1152/ajpendo.90263.2008

Faraji J, Karimi M, Soltanpour N, et al. Oxytocin-mediated social enrichment promotes longer telomeres and novelty seeking. Elife. 2018;13;7:e40262. Available from: https://doi.org/10.7554/eLife.40262

Stevenson JR, McMahon EK, Boner W, Haussmann MF. Oxytocin administration prevents cellular aging caused by social isolation. Psychoneuroendocrinology. 2019;103:52-60. Available from: https://doi.org/10.1016/j.psyneuen.2019.01.006

Kenkel WM, Perkeybile AM, Yee JR, et al. Behavioral and epigenetic consequences of oxytocin treatment at birth. Sci Adv. 2019;5(5):eaav2244. Available from: https://doi.org/10.1126/sciadv.aav2244

Fan X-Y, Shi G, Zhao P. Methylation in Syn and Psd95 genes underlie the inhibitory effect of oxytocin on oxycodone-induced conditioned place preference. Eur Neuropsychopharmacol 2019;29(12),:1464–1475. Available from: https://doi.org/10.1016/j.euroneuro.2019.10.010

Bordt EA, Smith CJ, Demarest TG, Bilbo SD, Kingsbury MA. Mitochondria, oxytocin, and vasopressin: unfolding the inflammatory protein response. Neurotox Res. 2019;36(2):239-256. Available from: https://doi.org/10.1007/s12640-018-9962-7

Cho SY, Kim AY, Kim J, et al. Oxytocin alleviates cellular senescence through oxytocin receptor-mediated extracellular signal-regulated kinase/Nrf2 signalling. Br J Dermatol. 2019;181(6):1216-1225. Available from: https://doi.org/10.1111/bjd.17824

Elabd C, Basillais A, Beaupied H, et al. Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis. Stem Cells. 2008;26(9). Available from: https://doi.org/10.1634/stemcells.2008-0127

Noiseux N, Borie M, Desnoyers A, et al. Preconditioning of stem cells by oxytocin to improve their therapeutic potential. Endocrinology. 2012;153(11):5361-72. Available from: https://doi.org/10.1210/en.2012-1402

Elabd C, Cousin W, Upadhyayula P, et al. Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nat Commun. 2014;5:4082. Available from: https://doi.org/10.1038/ncomms5082

Breuil V, Trojani MC, Ez-Zoubir A. Oxytocin and bone: review and perspectives. Int J Mol Sci. 2021;22(16):8551. Available from: https://doi.org/10.3390/ijms22168551

Done AJ, Traustadóttir T. Nrf2 mediates redox adaptations to exercise. Redox Biol. 2016;10:191-199. Available from: https://doi.org/10.1016/j.redox.2016.10.003

Schmidlin CJ, Dodson MB, Madhavan L, Zhang DD. Redox regulation by NRF2 in aging and disease. Free Radic Biol Med. 2019;134:702-707. Available from: https://doi.org/10.1016/j.freeradbiomed.2019.01.016

Matsui S, Sasaki T, Kohno D, et al. Neuronal SIRT1 regulates macronutrient-based diet selection through FGF21 and oxytocin signalling in mice. Nat Commun. 2018;9(1):4604. Available from: https://doi.org/10.1038/s41467-018-07033-z

Motohashi H, Katsuoka F, Engel JD, Yamamoto M. Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Proc Natl Acad Sci USA. 2004;101(17):6379-84. Available from: https://doi.org/10.1073/pnas.0305902101

Kimura T, Ivell R, Rust W, et al. Molecular cloning of a human MafF homologue, which specifically binds to the oxytocin receptor gene in term myometrium. Biochem Biophys Res Commun. 1999;264(1):86-92. Available from: https://doi.org/10.1006/bbrc.1999.1487

Forsling ML, Wheeler MJ, Williams AJ. The effect of melatonin administration on pituitary hormone secretion in man. Clin Endocrinol (Oxf). 1999;51(5):637-42. Available from: https://doi.org/10.1046/j.1365-2265.1999.00820.x

Vriend J, Reiter RJ. The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome. Mol Cell Endocrinol. 2015;401:213-20. Available from: https://doi.org/10.1016/j.mce.2014.12.013

Ahmadi Z, Ashrafizadeh M. Melatonin as a potential modulator of Nrf2. Fundam Clin Pharmacol. 2020;34(1):11-19. Available from: https://doi.org/10.1111/fcp.12498

Patrick RP, Ames BN. Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J. 2014;28(6):2398-413. Available from: https://doi.org/10.1096/fj.13-246546

Chen L, Yang R, Qiao W, et al. 1,25-Dihydroxyvitamin D exerts an antiaging role by activation of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence signaling. Aging Cell. 2019;18(3):e12951. Available from: https://doi.org/10.1111/acel.12951

Jong TR, Menon R, Bludau A, et al. Salivary oxytocin concentrations in response to running, sexual self-stimulation, breastfeeding and the TSST: The Regensburg Oxytocin Challenge (ROC) study. Psychoneuroendocrinology. 2015;62:381-8. Available from: https://doi.org/10.1016/j.psyneuen.2015.08.027

Rassovsky Y, Harwood A, Zagoory-Sharon O, Feldman R. Martial arts increase oxytocin production. Sci Rep. 2019;9(1):12980. Available from: https://doi.org/10.1038/s41598-019-49620-0

Alizadeh AM, Heydari Z, Rahimi M, et al. Oxytocin mediates the beneficial effects of the exercise training on breast cancer. Exp Physiol. 2018;103(2):222-235. Available from: https://doi.org/10.1113/EP086463

Blechman J, Amir-Zilberstein L, Gutnick A, Ben-Dor S, Levkowitz G. The metabolic regulator PGC-1α directly controls the expression of the hypothalamic neuropeptide oxytocin. J Neurosci. 2011;31(42):14835-40. Available from: https://doi.org/10.1523/JNEUROSCI.1798-11.2011

Talash K, Eevuri MR, Diep P-T. (2021) A potential role for endogenous oxytocin in adaptation to cold: implications for health? Morecambe Bay Medical Journal 2021;8(10);267–270. Available from: https://doi.org/10.48037/mbmj.v8i10.1309

Guo J, Hu H, Chen Z, et al. Cold exposure induces intestinal barrier damage and endoplasmic reticulum stress in the colon via the SIRT1/Nrf2 signaling pathway. Front Physiol. 2022;13:822348. Available from: https://doi.org/10.3389/fphys.2022.822348

Lawson EA, Marengi DA, DeSanti RL, et al. Oxytocin reduces caloric intake in men. Obesity (Silver Spring). 2015;23(5):950-6. Available from: https://doi.org/10.1002/oby.21069

Challinor SM, Winters SJ, Amico JA. Pattern of oxytocin concentrations in the peripheral blood of healthy women and men: effect of the menstrual cycle and short-term fasting. Endocr Res. 1994;20(2):117-25. Available from: https://doi.org/10.3109/07435809409030403

Yoon JC, Puigserver P, Chen G, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1.

Nature. 2001;413(6852):131-8. Available from: https://doi.org/10.1038/35093050

Lettieri-Barbato D, Minopoli G, Caggiano R, et al. Fasting drives Nrf2-related antioxidant response in skeletal muscle. Int J Mol Sci. 2020;21(20):7780. Available from: https://doi.org/10.3390/ijms21207780

Kulkarni SR, Donepudi AC, Xu J, et al. Fasting induces nuclear factor E2-related factor 2 and ATP-binding Cassette transporters via protein kinase A and Sirtuin-1 in mouse and human. Antioxid Redox Signal. 2014;20(1):15-30. Available from: https://doi.org/10.1089/ars.2012.5082

Lai X, Wu X, Hou N, et al. Vitamin A deficiency induces autistic-like behaviors in rats by regulating the RARβ-CD38-Oxytocin axis in the hypothalamus. Mol Nutr Food Res. 2018;62(5). Available from: https://doi.org/10.1002/mnfr.201700754

Sheldrick EL, Flint AP. Post-translational processing of oxytocin-neurophysin prohormone in the ovine corpus luteum: activity of peptidyl glycine alpha-amidating mono-oxygenase and concentrations of its cofactor, ascorbic acid. J Endocrinol. 1989;122(1):313-22. Available from: https://doi.org/10.1677/joe.0.1220313

Bharadwaj VN, Meyerowitz J, Zou B, et al. Impact of magnesium on oxytocin receptor function. Pharmaceutics. 2022;14(5):1105. Available from: https://doi.org/10.3390/pharmaceutics14051105

Yang L, Palliyaguru DL, Kensler TW. Frugal chemoprevention: targeting Nrf2 with foods rich in sulforaphane. Semin Oncol. 2016;43(1):146-153. Available from: https://doi.org/10.1053/j.seminoncol.2015.09.013

Chen P, Li L, Gao Y, et al. β-carotene provides neuro protection after experimental traumatic brain injury via the Nrf2-ARE pathway. J Integr Neurosci. 2019;18(2):153-161. Available from: https://doi.org/10.31083/j.jin.2019.02.120

Wang G, Xiu P, Li F, Xin C, Li K. Vitamin A supplementation alleviates extrahepatic cholestasis liver injury through Nrf2 activation. Oxid Med Cell Longev. 2014;2014:273692. Available from: https://doi.org/10.1155/2014/273692

Satoh T, Trudler D, Oh CK, Lipton SA. Potential therapeutic use of the rosemary diterpene carnosic acid for Alzheimer’s Disease, Parkinson’s Disease, and long-COVID through NRF2 activation to counteract the NLRP3 inflammasome. Antioxidants (Basel). 2022;11(1):124. Available from: https://doi.org/10.3390/antiox11010124

Rahban M, Habibi-Rezaei M, Mazaheri M, Saso L, Moosavi-Movahedi AA. Anti-viral potential and modulation of Nrf2 by curcumin: pharmacological implications. Antioxidants (Basel). 2020;9(12):1228. Available from: https://doi.org/10.3390/antiox9121228

Manoogian ENC, Chow LS, Taub PR, Laferrère B, Panda S. Time-restricted eating for the prevention and management of metabolic diseases. Endocr Rev. 2022;43(2):405-436. Available from: https://doi.org/10.1210/endrev/bnab027